Power sensor module specifications (Autorange mode)

	Agilent 81635A	Agilent 81634B
Sensor element	InGaAs (dual)	InGaAs
Wavelength range	800 – 1650 nm	800 – 1700 nm
Power range	+10 to -80 dBm	+ 10 to –110 dBm
Applicable fiber type	Standard SM and MM up to 62.5 µm core size,	Standard SM and MM up to 100 µm core size, NA ≤0.3
	NA ≤0.24	
Uncertainty (accuracy) at	±3 %	± 2.5 %
reference conditions [1]	(1200 nm to 1630 nm)	(1000 nm to 1630 nm)
Total uncertainty [2]	\pm 5% \pm 20 pW ^{[8], [9]}	\pm 4.5% \pm 0.5 pW
	(1200 nm to 1630 nm)	(1000 nm to 1630 nm)
Relative uncertainty:		
- due to polarization ^[3]	typ. ±0.015 dB	$< \pm 0.005 \text{ dB}$
- spectral ripple	typ. ±0.015 dB	$< \pm 0.005 \text{ dB}$
(due to interference) [4]		
Linearity (power): [5]	CW +10 to -60 dBm	CW +10 to -90 dBm
	(1200 nm to 1630 nm)	(1000 nm to 1630 nm)
- at 23°C ± 5°C	$<\pm 0.02~{ m dB} \pm 20~{ m pW}^{~{ m [9]}}$	$<\pm0.015~\mathrm{dB}\pm0.2~\mathrm{pW}$
- at operating temp. range	$<\pm0.06$ dB ±20 pW $^{[9]}$	$<\pm0.05~\mathrm{dB}\pm0.5\mathrm{pW}$
Return loss [7]	>40 dB	> 55 dB
Noise (peak to peak) [5] [6]	< 20 pW	< 0.2 pW
Averaging time (minimal)	100 <i>μ</i> s	100 <i>μ</i> s
Analog Output	none	included
Dimensions (H x W x D)	75 mm x 32 mm x 335 mm (2.8" x 1.3" x 13.2")	
Weight	0.5 kg	
Recalibration period	2 years	
Operating temperature	+10°C to +40°C	0°C to +45°C
Humidity	Non-condensing	Non-condensing
Warm-up time	20 min	20 min

[1] Reference conditions:

- • Power level 10 μ W (-20dBm), continuous wave (CW)
- $\bullet \quad \text{Fiber 50 } \mu\text{m graded-index, NA} = 0.2$
- $\bullet~$ Ambient temperature 23°C $\pm~5^{\circ}$ C
- On day of calibration (add \pm 0.3 % for aging over one year, add \pm 0.6 % over two years)
- Spectral width of source < 10nm (FWHM)
- Wavelength setting at powermeter must correspond to source wavelength ±0.4 nm

$\ensuremath{^{[2]}}$ Operating Conditions:

- Fiber \leq 50 μ m, NA \leq 0.2
- Only Agilent 81635A: For fiber 62.5 μm graded-index (NA = 0.24) : add \pm 2 %
- Within one year after calibration, add 0.3 % for second year

- Add \pm 1% for Biconic connector
- Operating temperature range as specified humidity: none condensing
- $^{[3]}$ All states of polarization at constant wavelength (1550 nm \pm 30 nm) and constant power, straight connector, T = 23°C \pm 5°. For angled connector (8°) add \pm 0.01 dB typ.
- [4] Conditions:

Wavelength 1550 nm \pm 30 nm, fixed state of polarization, constant power, Temperature 23°C \pm 5°C Linewidth of source \geq 100 MHz, angled connector 8°.

- ^[5] At const. Temperature ($_{\Delta}T = \pm 1$ °C)
- Averaging time 1s, T = 23° C $\pm 5^{\circ}$ C, observation time 300 s. Wavelength range 1200-1630 nm.
- [7] Conditions:

Wavelengths 1310nm \pm 30 nm and 1550nm \pm 30 nm. Standard single mode fiber, angled connector min $8^{\circ}.$

 $T = 23^{\circ}C \pm 5^{\circ}C$

- $^{[8]}$ For wavelengths > 1600 nm add \pm 0.06%/nm
- $^{[9]}$ For input power > 2 mW add \pm 0.02dB